Modélisation des décharges plasmas froids à basse pression

(Modeling of low pressure plasma discharges)

Gerjan Hagelaar

Laboratoire Plasma et Conversion d'Énergie (LAPLACE) Université Paul Sabatier, CNRS Toulouse, France

Modelling of low-temperature plasmas

- Particles described separately per species
 - ➤ Electrons : energy absorption & ionization
 - ➤ Ions : influence electron motion, surface treatment
 - > Excited neutrals : stepwize ionization, plasma chemistry
 - ➤ Gas neutrals
- Classical mechanics
 - ➤ Particle approach : Newton's equations + averaging
 - ➤ Macroscopic approach : fluid equations
- Electromagnetic interaction described via Maxwell equations
 - ➤ Electron-ion coupling : Poisson equation
 - > Applied field : DC, RF, pulsed, microwave
- Collisions treated by input data from experiments & quantum-mechanics Cross sections, transport coefficients, rate coefficients
 Mainly with gas
 Many uncertainties / unknowns

Particle approach

- Sample individual particles from total population
- Simulate trajectories
- Take statistical averages
- Newton's equations of motion:

$$\frac{dx}{dt} = v \qquad \frac{dv}{dt} = \frac{q}{m} (E + v \times B)$$
macroscopic fields due

macroscopic fields du to collective particles (plasma + external) Self-consistent description of plasma fields requires to follow a large number of particles simultaneously, e.g. PIC method

Collision sampling from probability distributions (Monte Carlo)

collision probability per unit time: $v = N\sigma(v_{rel})v_{rel}$ relative (= collision frequency) target cross section

Cross sections

Electron laboratory energy \cong relative energy

$$\varepsilon = \frac{1}{2} m_e v_e^2 \cong \frac{1}{2} m_{red} v_{rel}^2$$

Hall-effect thuster simulation

Discharge shows instabilities, e.g. transit time oscillations:

Boltzmann equation

- Distribution function $f(t, \mathbf{x}, \mathbf{v})$ = density of particles in phase space
- Spatio-temporal evolution of f described by Boltzmann equation:

$$\frac{\partial \mathbf{f}}{\partial \mathbf{t}} + \mathbf{v} \cdot \nabla \mathbf{f} + \frac{\mathbf{q}}{\mathbf{m}} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} \mathbf{f} = \mathbf{C}[\mathbf{f}] \leftarrow \text{collision operator}$$

- Simplify by approximations:
 - ➤ Homogeneous approach
 - ➤ Nonlocal approach
 - > Two-term velocity expansion
 - ➤ Velocity-moment approach (fluid equations)
 - > ...

Homogeneous Boltzmann equation

• Electrons in homogeneous field in state steady:

Spherical harmonics expansion

$$f(\mathbf{x}, \mathbf{v}, \mathbf{t}) \cong f_0(\mathbf{v}) + \cos\theta f_1(\mathbf{v}) + \dots$$
isotropic component angle anisotropic
(= EEDF) with E component

■ Two-term homogeneous Boltzmann equation:

$$-\frac{\mathbf{e}^{2}(\mathbf{E}/\mathbf{N})^{2}}{3\mathbf{m}_{e}^{2}}\frac{\partial}{\partial \mathbf{v}}\left(\frac{\mathbf{v}}{\sigma_{m}}\frac{\partial \mathbf{f}_{0}}{\partial \mathbf{v}}\right) = \mathbf{C}_{0}[\mathbf{f}_{0}] \qquad \mathbf{f}_{1} = \frac{\mathbf{e}(\mathbf{E}/\mathbf{N})}{\mathbf{m}_{e}\sigma_{m}\mathbf{v}}\frac{\partial \mathbf{f}_{0}}{\partial \mathbf{v}}$$

 Yields velocity distribution and all velocity-related quatities (EEDF, mean velocity, mean energy, rate coefficients) as a function of reduced field E/N

Homogeneous BE results in Argon

Fluid approach

Macroscopic quantities, averaged over velocity space

Particle density:
$$\mathbf{n}(\mathbf{x}, \mathbf{t}) = \iiint \mathbf{f}(\mathbf{x}, \mathbf{v}, \mathbf{t}) d\mathbf{v}$$

Mean velocity:
$$\mathbf{w} = \langle \mathbf{v} \rangle = \frac{1}{n} \int \int \mathbf{f} \, d\mathbf{v}$$

Mean energy:
$$\varepsilon = \frac{\mathbf{m}}{2\mathbf{e}} \langle \mathbf{v}^2 \rangle = \frac{\mathbf{m}}{2\mathbf{e}\mathbf{n}} \int \int \mathbf{\hat{y}}^2 \mathbf{f} \, d\mathbf{v}$$

Macroscopic transport equations = velocity moments of BE

$$\iiint \int \frac{\partial \mathbf{f}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{f} + \frac{\mathbf{q}}{\mathbf{m}} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} \mathbf{f} \mathbf{v} \nabla_{\mathbf{v}} \mathbf{f} \mathbf{v} = \iint \mathbf{f} \mathbf{v}^{m} \mathbf{d} \mathbf{v}$$

Fluid equations

Continuity equation: particle conservation

$$\frac{\partial \mathbf{n}}{\partial \mathbf{t}} + \nabla \cdot (\mathbf{n} \mathbf{w}) = \mathbf{S}$$
flux source
$$\mathbf{S} = \sum_{i} \mathbf{N}_{i} \mathbf{n}_{1i} \mathbf{n}_{2i} \mathbf{k}_{i}$$

$$\mathbf{k}_{i} = \langle \sigma_{i}(\mathbf{v}) \mathbf{v} \rangle$$
rate coefficient

• Momentum equation:

inertia frequency
$$m\frac{\partial \mathbf{n}\mathbf{w}}{\partial t} + m\nabla \cdot (\mathbf{n}\mathbf{w} \otimes \mathbf{w}) + \nabla \cdot \mathbf{P} - q\mathbf{n}(\mathbf{E} + \mathbf{w} \times \mathbf{B}) = -m\overline{\mathbf{v}}_{m}\mathbf{n}\mathbf{w} \quad \text{collisions}$$
inertia pressure tensor: $\mathbf{P} = m\mathbf{f}(\mathbf{v} - \mathbf{w}) \otimes (\mathbf{v} - \mathbf{w}) \mathbf{f} \mathbf{d} \mathbf{v}$

momentum transfer

Short mean free path: drift-diffusion approximation:

flux
$$\mathbf{n}_{w} = \frac{\mathbf{q}}{\mathbf{n}_{m}} \mathbf{n}_{w} = \frac{\mathbf{e}}{\mathbf{n}_{m}} \nabla(\mathbf{n}_{m}) = \frac{\mathbf{q}}{|\mathbf{q}|} \mathbf{n}_{w} - \nabla(\mathbf{D}_{m})$$
mobility diffusion coefficient

Minimal self-consistent model (high pressure)

• Electron & ion continuity:

$$\frac{\partial \mathbf{n_e}}{\partial \mathbf{t}} + \nabla \cdot (\mathbf{n_e} \mathbf{w_e}) = KN\mathbf{n_e} \qquad \frac{\partial \mathbf{n_i}}{\partial \mathbf{t}} + \nabla \cdot (\mathbf{n_i} \mathbf{w_i}) = KN\mathbf{n_e}$$

• Electron & ion drift-diffusion:

$$n_e \mathbf{w}_e = -\mu_e n_e \mathbf{E} - D_e \nabla n_e$$
 $n_i \mathbf{w}_i = \mu_i n_i \mathbf{E} - D_i \nabla n_i$

■ Poisson (ambipolar + applied field):

$$\varepsilon_0 \nabla \cdot \mathbf{E} = -\varepsilon_0 \nabla^2 \Phi = \boldsymbol{e} \boldsymbol{\eta} - \boldsymbol{e} \boldsymbol{\eta}$$
 $\mathbf{E} = -\nabla \Phi$

- Local field approximation: transport coefficients and ionization rate are functions of reduced field E/N (from experiments are homogeneous BE)
- Boundary conditions for the particle fluxes

Boundary conditions

Particle flux toward the wall

net flux
$$\rightarrow nw_{\perp} = nw_{w} - \Gamma_{w} \leftarrow \frac{\text{particles moving from wall due to reflection and creation (emission)}}{\text{particles moving}}$$

• Effective velocity of incident particles obtained from kinetic considerations

$$\mathbf{W}_{\mathbf{w}} = \frac{1}{4} \sqrt{\frac{8 \, \mathbf{e} \, \mathbf{T}}{\pi \, \mathbf{m}}} + \max \left(\operatorname{sgn}(\mathbf{q}) \mu \, \mathbf{E}_{\perp}, 0 \right)$$

$$\uparrow$$
¹/₄ or ¹/₂ or ?

Flux coming from the wall obtained from incident fluxes

emission coefficient
$$\Gamma_{w} = \sum_{s} \gamma_{s} \mathbf{n}_{s} \mathbf{w}_{w,s}$$
sum over all species

■ Equating to drift-diffusion → mixed boundary condition, e.g.

$$(\operatorname{sgn}(\mathbf{q})\mu \mathbf{E}_{\perp} - \mathbf{w}_{\mathbf{w}})\mathbf{n} - \mathbf{D}\nabla_{\perp}\mathbf{n} + \Gamma_{\mathbf{w}} = 0$$

Numerics

- Integrate equations sequentially in time $\mathbf{t}^{k+1} = \mathbf{t}^k + \Lambda \mathbf{t}$
- Implicit update of drift-diffusion flux: / k = time index

$$\frac{\boldsymbol{n}^{k+1} - \boldsymbol{n}^{k}}{\Delta t} + \nabla \cdot \left(\pm \mu \mathbf{E} \boldsymbol{n}^{k+1} - \boldsymbol{D} \nabla \boldsymbol{n}^{k+1} \right) = \boldsymbol{S}$$

No CFL time step constraints
$$\Delta t < (W/\Delta x + 2D/\Delta x^2)^{-1}$$

Exponential scheme for drift-diffusion flux: i = space index

$$\left(\mathbf{W} \mathbf{n} - \mathbf{D} \frac{\partial \mathbf{n}}{\partial \mathbf{x}} \right)_{i+1/2} = \frac{\mathbf{W}_{i+1/2}}{1 - \exp(-\mathbf{z})} \mathbf{n}_{i} + \frac{\mathbf{W}_{i+1/2}}{1 - \exp(\mathbf{z})} \mathbf{n}_{i+1}$$

$$\mathbf{z} = \frac{\mathbf{W}_{i+1/2} \Delta \mathbf{x}}{\mathbf{D}_{i+1/2}} = \frac{\pm \mu \mathbf{E}_{i+1/2} \Delta \mathbf{x}}{\mathbf{D}_{i+1/2}}$$

For electrons in ambipolar sheath: drift \approx diffusion \Rightarrow Boltzmann relation: $\frac{\mathbf{n}_{i+1}}{\mathbf{n}_i} = \exp(\mathbf{z}) \approx \exp\left(\frac{\Phi_{i+1} - \Phi_i}{\mathbf{T}}\right)$

Semi-implicit Poisson method

Charged particle transport strongly coupled with Poisson equation:

$$\nabla^{2}\Phi^{k+1} = \frac{\mathbf{e}}{\varepsilon_{0}}(\mathbf{n_{e}} - \mathbf{n_{i}})$$

$$\frac{\mathbf{n^{k+1}} - \mathbf{n^{k}}}{\Delta \mathbf{t}} + \nabla \cdot (\mp \mu \mathbf{n^{k+1}} \nabla \Phi^{k+1} - \mathbf{D} \nabla \mathbf{n^{k+1}}) = \mathbf{S}$$
Coupling time constant (Maxwell relaxation time)
$$\tau_{d} = \frac{\varepsilon_{0}}{\mathbf{e}(\mu_{e} \mathbf{n_{e}} + \mu_{i} \mathbf{n_{i}})} \cong \frac{\varepsilon_{0}}{\mathbf{e} \mu_{e} \mathbf{n_{e}}}$$

• Avoid time step constraint $\Delta t < \tau_d$ by space charge prediction:

$$\nabla^{2}\Phi^{k+1} = \frac{\mathbf{e}}{\varepsilon_{0}} (\tilde{\mathbf{n}}_{e}^{k+1} - \tilde{\mathbf{n}}_{i}^{k+1}) \qquad \tilde{\mathbf{n}}^{k+1} = \mathbf{n}^{k} + \Delta \mathbf{t} (\mathbf{S} - \nabla \cdot (\mp \mu \mathbf{n}^{k} \nabla \Phi^{k+1} - \mathbf{D} \nabla \mathbf{n}^{k}))$$
Modified Poisson equation:
$$\nabla \cdot ((1+\chi)\nabla \Phi^{k+1}) = \nabla \cdot (\chi \nabla \Phi^{k}) + \frac{\mathbf{e}}{\varepsilon_{0}} (2\mathbf{n}_{e}^{k} - \mathbf{n}_{e}^{k-1} - 2\mathbf{n}_{i}^{k} + \mathbf{n}_{i}^{k-1}) \qquad \text{Extrapolated space charge density}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \text{Semi-implicit terms cancel in steady state!}$$

Microdischarges for display technology

Plasma Adressed Liquid Crystal (Philips Eindhoven 1995-1998)

Plasma Display Panel (PDP) (Philips Aachen 1998-2001)

Coplanar PDP simulation

2.7x10²⁰

 $t = 0.34 \, \mu s$

,5.8x10²⁰

t = 0.17 μs

2.8x10²¹

Low pressure

Compare mean free path with macroscopic length scales (plasma size etc)

Electron energy equation

Long energy-transfer mean-free-path: local field approximation not valid

$$E/N \rightarrow f_0, \varepsilon, \mu_e, D_e, K$$

Solve mean energy from energy equation:

$$\frac{\partial \mathbf{n}_{e}\overline{\varepsilon}}{\partial \mathbf{t}} + \frac{5}{3}\nabla \cdot (\mathbf{n}_{e}\mathbf{w}_{e}\overline{\varepsilon} - \mathbf{n}_{e}\mathbf{D}_{e}\nabla\overline{\varepsilon}) = -\mathbf{e}\mathbf{n}_{e}\mathbf{w}_{e}\cdot\mathbf{E} + \mathbf{p}_{ext} - \mathbf{n}_{e}\mathbf{N}_{K} \leftarrow \frac{\text{collisional losses}}{\text{losses}}$$
thermal conduction
$$\frac{\mathbf{v}_{ext}}{\mathbf{v}_{ext}} - \mathbf{n}_{e}\mathbf{N}_{K} \leftarrow \frac{\mathbf{v}_{ext}}{\mathbf{v}_{ext}} - \mathbf{n}_{e}\mathbf{N}_{E}\mathbf{v}_{ext} - \mathbf{n}_{e}\mathbf{v}_{ext} - \mathbf{n}_{e}\mathbf{N}_{E}\mathbf{v}_{ext} - \mathbf{n}_{e}\mathbf{v}_{ext} - \mathbf{n}_{e}\mathbf{v}_{ex$$

 Parametrise electron transport coefficients & rates as a function of electron mean energy

$$\overline{\varepsilon} \rightarrow \mu_e, D_e, K, \kappa$$

■ Maxwellian EEDF:
$$\overline{\varepsilon} = \frac{3}{2} T_e$$
 $D_e = \mu_e T_e$ Einstein relation

Momentum equation

■ Long momentum-transfer mean-free-path: drift-diffusion not valid, reconsider momentum equation:

$$m\frac{\partial \mathbf{n}\mathbf{w}}{\partial t} + m\nabla \cdot (\mathbf{n}\mathbf{w} \otimes \mathbf{w}) + \nabla \cdot \mathbf{P} - q\mathbf{n}(\mathbf{E} + \mathbf{w} \times \mathbf{B}) = -m\overline{\mathbf{n}}_{m}\mathbf{n}\mathbf{w}$$

■ Electrons: isotropic due to ambipolar trapping → neglect w terms

Boltzmann equilibrium:
$$T_e \nabla n_e \approx -e n_e E$$
 $n_e = n_0 \exp\left(\frac{\Phi - \Phi_0}{T_e}\right)$

Drift-diffusion equilibrium: Boltzmann relation

Ions: very anisotropic → neglect pressure (& substitute continuity equation)

Low pressure ambipolar plasma transport

Self-consistent description of sheath & presheath: Poisson equation

Example without magnetic field:

Dense plasmas: quasineutral approach

- Compare sheath size (Debye length) with plasma size $\lambda_D = \sqrt{\frac{\varepsilon_0 T_e}{e\eta_e}}$
- Thin sheath → eliminate Poisson's equation using quasineutrality:

Solve electric field from electron conservation / $\nabla \cdot \left(-\mu_e \mathbf{n}_e \mathbf{E} - \mathbf{D}_e \nabla \mathbf{n}_e\right) = \mathbf{S}_e - \frac{\partial \mathbf{n}_e}{\partial \mathbf{t}} = \nabla \cdot (\mathbf{n}_i \mathbf{w}_i)$ current conservation:

• Drift-diffusion ions: ambipolar diffusion:

Separate ambipolar / external field: $\mathbf{E} = \mathbf{E}_{\text{amb}} + \mathbf{E}_{\text{ext}}$ $(\mu_e + \mu_i) \mathbf{n}_e \mathbf{E}_{\text{amb}} = -(\mathbf{D}_e - \mathbf{D}_i) \nabla \mathbf{n}_e$ $\frac{\partial \mathbf{n}_e}{\partial t} - \nabla \cdot \left(\frac{\mu_i \mathbf{D}_e + \mu_e \mathbf{D}_i}{\mu_e + \mu_i} \nabla \mathbf{n}_e \right) = \mathbf{S}_e$ $\nabla \cdot \left((\mu_e + \mu_i) \mathbf{n}_e \mathbf{E}_{\text{ext}} \right) = 0$

ambipolar diffusion

coefficient

Complications at low pressure due to inertia & boundary conditions But: semi-implicit Poisson method also works!

Hybrid models of magnetized discharge plasmas: fluid electrons + particle ions

Gerjan Hagelaar

LAPLACE: Laboratoire Plasmas & Conversion d'Energie

Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

Introduction

Magnetic fields used in low-pressure discharges:

- magnetron
- electron-cyclotron resonance (ECR)
- helicon
- Hall-effect thruster
- etc... (magnetized discharges)

Magnetic field \rightarrow complex physics

Insight from simple models

Plan

- Elementary physics
- Modelling
- Limits of modelling
- Illustrative model results:
 - ECR reactor
 - Hall thruster
 - Galathea trap

Elementary effects of the magnetic field

- Cyclotron motion → confinement
- Perpendicular electric field \rightarrow E×B drift
- Collisions destroy magnetic confinement

Typical conditions

plasma	pressure	0.1 – 10 mTorr
	plasma density	$10^{15} - 10^{19} \mathrm{m}^{-3}$
	magnetic field	0.001 - 0.1 T
	electron temperature	2 – 20 eV
lengths	Dobyo longth	10-5 10-3 m
	Debye length	$10^{-5} - 10^{-3} \mathrm{m}$
	electron Larmor radius	10 ⁻⁴ − 0.01 m
	ion Larmor radius	0.02 – 5 m
	mean free path	0.01 – 1 m
	plasma size	0.02 – 1 m
frequencies	electron cyclotron	$3\times10^8 - 2\times10^{10} \text{ s}^{-1}$
	electron collision	$3\times10^{5}-10^{8} \text{ s}^{-1}$

Long mean free path

Electrons are magnetized → collisions + ionization

Ions have only few collisions

Magnetic field not influenced by plasma

Modelling

Low pressure → particle-in-cell (PIC):

- electron and ion trajectories
- space charge electric fields

```
K. A. Ashtiani et al, J. Appl. Phys. 78 (4), 2270-2278 (1995).
```

- S. Kondo and K. Nanbu, J. Phys. D: Appl. Phys. 32, 1142-1152 (1999).
- J. C. Adam et al, Phys. Plasmas 11 (1), 295-305 (2004).

Magnetized PIC models cumbersome:

- high plasma density → small time steps, small cells
- important 2D effects
- → interest in simpler faster models
- → describe electrons by collisional fluid equations

Electron fluid equations

Electron conservation

$$\frac{\partial n_e}{\partial t} + \nabla \cdot \Gamma_e = S \quad \begin{array}{l} \text{ionisation} \\ \text{source} \end{array}$$
 density flux

Anisotropic flux

$$\Gamma_e = \mu n_e \nabla \Phi - \mu \nabla (n_e T_e)$$
drift diffusion

Mobility tensor

Mobility tensor (classical theory)
$$\mu_{\perp} = \frac{v^2}{v^2 + \omega_c^2} \mu_{\parallel} = \frac{ev/m_e}{v^2 + \omega_c^2}$$
 cyclotron frequency

perpendicular mobility << parallel mobility

Magnetized drift-diffusion equation

$$n_e \mathbf{w}_e = \frac{1}{1 + (\mu \mathbf{B})^2} (\mathbf{G} - \mu \mathbf{B} \times \mathbf{G} + \mu^2 (\mathbf{B} \cdot \mathbf{G}) \mathbf{B}) \equiv (\mu/\mu) \cdot \mathbf{G}$$

mobility tensor

Mobility tensor components:

$$\mu_{//} = \mu$$
 $\mu_{\perp} = \frac{1}{1 + (\mu \mathbf{B})^2} \mu$
 $\mu_{\times} = \pm \frac{\mu \mathbf{B}}{1 + (\mu \mathbf{B})^2} \mu$
Parallel
Perpendicular
transport
unaffected

Perpendicular
confinement

Hybrid models

Non-quasineutral scheme:

- ion particles $\rightarrow n_i$
- electron fluid $\rightarrow n_e$
- Poisson $\rightarrow \Phi$

$$\varepsilon_0 \nabla^2 \Phi = e(n_e - n_i)$$

no plasma oscillations

→ large time steps

Quasineutral scheme:

- ion particles $\rightarrow n_i = n_e$
- electron fluid $\rightarrow \Phi$

no sheaths \rightarrow large cells

$$\nabla \cdot (\mu n_e \nabla \Phi - \mu \nabla (n_e T_e)) = \nabla \cdot \Gamma_i$$
 (Ohm's law)

R. K. Porteous et al, Plasma Sources Sci. Technol. 3, 25-39 (1994).

J. M. Fife, Ph. D. thesis, MIT, 1998.

G. J. M. Hagelaar et al, J. Appl. Phys. 91 (9), 5592-5598 (2002).

Limits of the electron equations

■ Anomalous transport \bot **B** → empirical parameters

$$ev/m_e (v^2 + \omega_c^2) < \mu_{\perp} < 1/16B$$
 classical mobility **?** Bohm mobility

■ Non-local effects //**B**: inertia, mirror confinement But: flux //**B** limited by boundaries

$$\mu_{//} n_e \nabla_{//} \Phi \approx \mu_{//} \nabla_{//} (n_e T_e)$$
drift diffusion

Magnetic field lines approximately equipotential

Numerical issues (1)

Extreme anisotropy \rightarrow numerical errors tend to destroy the magnetic confinement

Numerical issues (2)

Numerical issues (3)

Iterative flux scheme:

interpolate transverse flux rather than transverse field

$$\Gamma_{e,x}^{k+1} = \frac{1}{1 + \Omega_{y}^{2}} \left[\mu_{0} n_{e} \frac{\partial \Phi}{\partial x} - \mu_{0} \frac{\partial n_{e} T_{e}}{\partial x} \right]^{k+1} + \frac{\Omega_{x} \Omega_{y}}{1 + \Omega_{y}^{2}} \overline{\Gamma}_{e,y}^{k}$$

average of 4 surrounding transverse fluxes

Numerical issues (4)

Coupling with Poisson's equation: severe time step constraint for explicit scheme

$$\Delta t < \frac{\varepsilon_0}{e n_e \mu_{//}} = \frac{v}{\omega_{pe}^2}$$
 < 10⁻¹¹ s (vs. ion CFL-time 10⁻⁸ – 10⁻⁶ s)

Semi-implicit scheme:

Poisson's equation includes prediction of space charge

$$\nabla \cdot ((\varepsilon_0 + e\Delta t \mu n_e) \nabla \Phi - e\Delta t \mu \nabla (n_e T_e)) = e(n_e - n_i)$$
 implicit space charge prediction

Examples of model results

Non-quasineutral hybrid model → sheaths resolved

Fixed:

- Gaussian ionisation source
- uniform electron temperature (diffusion)
- electron collision frequency

Calculated:

- electron/ion densities
- electron/ion fluxes, currents
- self-consistent potential

Example I: Diffusion in ECR reactor

ECR reactor with dielectric wall

Magnetic confinement reduces loss to source wall

ECR reactor with grounded wall

Magnetic confinement shortcircuited by walls

A. Simon, Phys. Rev. 98 (2), 317-318 (1955).

Example II: Hall-effect thruster

cylinder axis

Hall-effect thruster

Equipotential lines ~ magnetic field lines Applied voltage penetrates in plasma bulk

Example III: semi-Galathea trap

cylinder axis

Semi-Galathea trap

Potential well reduces ion wall loss and guides ions to exit

Semi-Galathea trap without emission

Potential well disappears because of cathode sheath

Conclusions

- In magnetized discharges, charged particle transport and space charge fields are different
- This can be studied in 2D by hybrid models
- No predictive simulations, but insight in physical principles