

Plan of the Presentation

- **1. Background: Spatially and Temporally resolved thermal plasma diagnostics**
 - a. Thermal plasma
 - **b.** Methods of plasma diagnostics
- 2. A brief theoretical description
 - a. Scattering of waves in plasma: Rayleigh, Thomson
 - **b.** Thomson scattering in different plasmas
- 3. Thomson scattering in thermal arc plasma
 - a. Experimental procedure and data interpretation
 - b. Plasma disturbance by laser pulse
 - c. Spatial and Temporal averaging over laser pulse
- 4. Thomson scattering in laser induced plasma (LIB)
 - a. What is LIB?
 - b. Laser induced sparks in gases: Ar, Air, He
 - Experimental procedure: Imaging, emission spectrum, data treatment
 - Plasma disturbance by laser pulse and Determination of initial Te
 - Ion feature of TS spectrum: Determination of ion temperature
 - Rayleigh scattering: evolution of , shock wave
 - c. LIP generated on Al target
- 5. Summary and Conclusions

Background:

Spatially and Temporally resolved thermal plasma diagnostics

Thermal plasma

Isothermal balance close to the equilibrium $\Rightarrow T_e \approx T_h$ \downarrow High electron density, pressure, temperature and ionization degree For argon arc plasma at $p = 10^5$ Pa LIE is achieved for $N_e \sim 10^{22}$ m⁻³ $T_e \sim 10^4$ K

Spectrum

- intense continuous radiation
- lines appreciably broadened due to Stark broadening
- important contribution of Doppler broadening

Examples analyzed in this talk:

Arc plasma at atmospheric pressure – Stationary plasma

Plasma induced by pulsed laser – Transient plasma

Plasma diagnostics requirements

Main goal:

Plasma parameters: Plasma composition N_e, T_e, T_h (Quantitative analysis)

Ideal method:

- Temporal resolution adequate to a time scale of the plasma evolution
- Spatially resolved good spatial resolution necessary to map plasma parameters
- \blacktriangleright Non-intrusive \rightarrow plasma state not disturbed
- No assumptions about the plasma state

There is no such method which meets all of these requirements

Inhomogeneous plasma \Rightarrow Spatial resolution is crucial factor affecting quality of diagnostics

Methods of plasma diagnostics

Optical emission spectroscopy (passive)

- Only <u>spatially integrated</u> intensity along the line of sight can be directly measured (local values need Abel transformation)
 - possible reabsorption
 - only excited particles can be probed
 - required assumptions about the plasma equilibrium state

Methods of plasma diagnostics

Optical emission spectroscopy (passive)

- Only <u>spatially integrated</u> intensity along the line of sight can be directly measured (local values need Abel transformation)
 - possible reabsorption only excited particles can be probed required assumptions about the plasma equilibrium state

Methods based on transmitted light analysis (active)

- Laser absorption spectroscopy
- Polarization spectroscopy
- ✓ Cavity ring-down absorption
- ✓ Interferometry

[®]Non-local methods!

Spatially resolved laser based techniques

 \checkmark

Laser based, local methods

Laser induced fluorescence (LIF, TALIF)

Ont useful at high electron density

- Signal diminished by non-radiative decay
- Masked in strong plasma radiation background

Spatially resolved laser based techniques

Diagnostics Plasma, RPF, Orléans, 02-12-2014

eEmi 🛛 🖂

E

Spatially resolved laser based techniques

Laser based, local methods

Laser induced fluorescence (LIF, TALIF)

Ont useful at high electron density

- Signal diminished by non-radiative decay
- Masked in strong plasma radiation background
- ✓ Non-linear spectroscopy
- Scattering of laser radiation

Remains to consider:

Pump – probe technique

Scattering of laser radiation: A brief theoretical description

Non-relavistic scattering of laser radiation

Elastic scattering

- Rayleigh scattering
- Thomson scattering

Inelastic scattering

Raman scattering

- Non coherent scattering on an ensemble
 - $S_k(\Delta \omega) \, d\omega_s = F_k(v_k) \, dv_k = k^{-1} F_k(\Delta \omega / k) \, d\omega_s$

Spectral density function reproduces velocity distribution of moving scattering centers

From Rayleigh, Thomson and Raman scattering we have information on electron and heavy particles density and their temperatures \rightarrow PLASMA DIAGNOSTICS

Incoherent and coherent Thomson scattering

$$\alpha \equiv \frac{1}{k\lambda_{\rm D}} \approx \frac{1}{4\pi \sin(\theta/2)} \frac{\lambda_{\rm L}}{\lambda_{\rm D}}$$

$$\lambda_D = \left(\frac{\varepsilon_0 k_B T_e}{e^2 N_e}\right)$$

$$\widehat{\omega}_{pl} = \sqrt{e^2 n_e / (\varepsilon_0 m_e)}$$

 $\alpha << 1 \rightarrow$ Non-collective scattering

Spectral distribution gives EEDF

At optical wavelength and thermal plasma $\alpha \sim 1$

Greni

 $\alpha >> 1 \rightarrow$ Collective / Coherent scattering

- Coupling with Langumir plasma waves
- Coupling with ion acoustic waves

$$\delta \omega_{\rm e} = \sqrt{\hat{\omega}_{\rm pl}^2} + 3\,{\rm k}^2\,k_B T_e / m_e \qquad \delta \omega_i = {\rm k}\,\sqrt{2k_B T_i / M_i}$$

Greni Exercia

Thomson scattering – Partially collective case ($\alpha \approx 1$)

→ The spectral form factor

Thomson scattering in different plasmas

Plasma source	N _e [m ⁻³]	Т _е [К]	α
<u>Tokamak</u>	10^{20}	10 ⁷	0.006
<u>Glow discharge</u>	10 ¹⁸	10 ⁴	0.02
<u>Argon arc</u> at atmospheric pressure	10 ²³	10 ⁴	3.0
<u>Laser induced</u> <u>plasma</u>	10^{25}	10^{5}	6.0

41

Always collective scattering dominates !

 N_e , T_e can be determined based on the single Thomson scattered spectrum

Ħ

GREMI

Plasma generated in a transferred arc, burning in pure (99.995%) argon at atmospheric pressure with 40 - 160A arc curent Electron temperature T_e : 10000 – 24000 K Electron concentration N_e : $10^{22} - 10^{23} \text{ m}^{-3}$ **Stark broadening dominates** anode Long term stability Large gradients of plasma parameters Strong continous emission $\propto N_e^2 / \sqrt{T_e}$ **Domination of non-radiative processes** cathode **Plasma column** Plasma generator

Diagnostics Plasma, RPF, Orléans, 02-12-2014

9 mm

Experimental set-up

Measurement procedure

T_e is higher than T_{LTE} obtained form N_e, by few thousands kelvins, which contradicts the LTE plasma model

Either most of theoretical and experimental studies are false ...

OR interpretation of TS results is incorrect ???

Diagnostics Plasma, RPF, Orléans, 02-12-2014

remi || 🛛 🖂 🖓 🖓

Section heating by laser pulse

Plasma perturbated (heated) in the inverse bremsstrahlung process !!

Greni

Diagnostics Plasma, RPF, Orléans, 02-12-2014

49

Section heating by laser pulse

MHD model, argon thermal plasma heated by the square, 7ns long laser pulse

Electron heating is a strongly nonlinear function of the laser power

so the linear extrapolation to zero pulse energy is invalid !

A.B. Murphy; PRL 89, 025002 (2002); Phys Rev E 69, 016408 (2004)

Section heating by laser pulse

MHD model, argon thermal plasma heated by the square, 7ns long laser pulse

```
Electron heating is a strongly nonlinear function of the laser power
```

so the linear extrapolation to zero pulse energy is invalid !

A.B. Murphy; PRL 89, 025002 (2002); Phys Rev E 69, 016408 (2004)

51

Averaging over laser beam cross section and over duration of laser pulse

20

Te [K]

23200

17400

14500

11600

X

1.80

2.08

2.28

2.55

TS spectra for different n_e and T_e values

GREMill

ΞĀ

PTAKAD Gottomini

Averaging over laser beam cross section (Experimental results: <u>spatially resolved results</u>)

Local values (across the laser beam) of n_e

No variations of n_e at lower laser energies and at the edges of the laser beam

GREMI

Diagnostics Plasma, RPF, Orléans, 02-12-2014

57

Averaging over laser beam cross section (Experimental results: <u>spatially resolved results</u>)

58

Local values (across the laser beam) of T_e

Increase of **T**, depends on laser power and initial plasma conditions, i.e. the electron number density and temperature

GREMI

Averaging over laser beam cross section (Experimental results: temporally resolved results)

Temporal evolution of n_e during the laser pulse

GREMill

ZAKEAD Romonizi

ΞĀ

Averaging over laser beam cross section (Experimental results: <u>temporally resolved results</u>)

GREMill

Ħ

betermination of initial T_e

N _e [[10 ²³ m ⁻³]	T _e [LTE]	T _e [lin.extr.]	T _e [origin]
	1.46	13900	22780	14000
	1.14	13050	20090	12200
	0.89	12500	17760	10000

Measurement of the temporal evolution of T_e and then extrapolation to the origin <u>of the pulse</u> is more adequate method than extrapolation to the zero laser energy

Diagnostics Plasma, RPF, Orléans, 02-12-2014

Thomson scattering in laser induced plasma

E

GrEMi

ZAKEAD Gotromiki

Laser induced plasmas: two main types

Laser induced sparks in gases

Spark created and probed by ns Nd:YAG lasers

Diagnostics Plasma, RPF, Orléans, 02-12-2014

71

Laser induced sparks in gases

Experimental setup to study laser induced spark created and probed by ns Nd:YAG lasers

Breakdown laser Nd:YAG @ 532nm, 2.0 kJ/cm², $\Delta \tau = 6$ ns, single-mode $\Delta \sigma < 1.0$ cm⁻¹ Probe laser Nd:YAG @ 532nm, up to 40 J/cm², $\Delta \tau = 4$ ns, single-mode $\Delta \sigma < 0.01$ cm⁻¹

Laser induced sparks in gases

Spark created and probed by ns Nd:YAG lasers

Breakdown laser Nd:YAG @ 532nm, 2.0 kJ/cm², $\Delta \tau = 6$ ns, single-mode $\Delta \sigma < 1.0$ cm⁻¹ Probe laser Nd:YAG @ 532nm, up to 40 J/cm², $\Delta \tau = 4$ ns, single-mode $\Delta \sigma < 0.01$ cm⁻¹

Scomparison with OES

Somparison with OES

GREMî ||

Diagnostics Plasma, RPF, Orléans, 02-12-2014

EERE KALAD

Solution temperature perturbation due to electron heating by the probe pulse in the process of inverse bremsstrahlung ?

LIBS = thermal plasmas: low Te and high Ne ⇒ very susceptible to el. heating

Electron temperature perturbation: Influence on probe laser fluence on T_e

LIP in argon at 1atm

- Below some value of laser fluence no significant change of T_e is observed but only uncertainties are rapidly growing
- For high values of laser fluence, Electron temperature can be significantly elevated by the probe laser pulse

A. Mendys, at al., Spectrochim. Acta B (2011) 66, 691; doi:10.1016/j.sab.2011.08.002

83

Electron temperature perturbation:
T_e evolution during the probe laser pulse

Delay ∆t probe breakdown pulse pulse ICCD 528 530 520 522 524 526 gate: 2-5ns probe pulse 520 522 524 526 528 530 wavelength (nm)

Probe laser fluence: 50J/cm², ICCD gate width: 3ns

Unlike N_e, T_e is significantly disturbed as the result of much shorter time scale of inverse bremsstrahlung process

A. Mendys, at al., Spectrochim. Acta B (2011) 66, 691; doi:10.1016/j.sab.2011.08.002

Diagnostics Plasma, RPF, Orléans, 02-12-2014

GREF

N_e and T_e evolution on axis of LIP generated in argon by 6ns pulse of 2kJ/cm² fluence

 N_e and T_e evolution on axis of LIP generated in argon by 6ns pulse of 2kJ/cm² fluence

GREMI

➡ Electron feature of TS diminishes at short delays due to high continuum plasma radiation

High continuum radiation of plasma significantly reduces S/N of electron feature of TS signal, only ion feature can be considered

Ion feature of TS spectrum: Determination of the ion temp.

→ indispensable to verify the thermodynamic equilibrium of LIP

Diagnostics Plasma, RPF, Orléans, 02-12-2014

Greni Eszerakta

Ion feature of TS spectrum: Determination of the ion temp.

→ indispensable to verify the thermodynamic equilibrium of LIP

Data treatment

- 1. Determination of T_e and N_e from electronic feature
- 2. Deconvolution of the apparatus profile (FWHM = 0.028 nm) from central peak (h)
- 3. Fitting ion feature of TS and Rayleigh spectra with T_i as a parameter

K.Dzierzega et al. Appl. Phys. Lett. 102, 134108 (2013)

96

Ion feature of TS spectrum: Determination of the ion temp.

Example: Helium

pump fluence – 1.2 kJ/cm²; probe fluence – 9.5 J/cm².

K.Dzierzega et al. Appl. Phys. Lett. 102, 134108 (2013)

Rayleigh scattering from laser induced plasma

Rayleigh scattering from laser induced plasma

GREMil

EESSEAKAP

B.Pokrzywka et al., Spectrochim. Acta B (2012) 74–75, 24

101

Rayleigh scattering from laser induced plasma

Shockwave evolution on axis of LIP generated in argon by 6ns pulse of 2kJ/cm² fluence

Set-up and Optical scattering

ablating laser: fluence 30 J/cm^2 ($6.7 \times 10^9 \text{ W/cm}^2$) probe beam: fluence 100 J/cm^2 ($16.6 \times 10^9 \text{ W/cm}^2$) Spatial resolution: $200 \mu \text{m}$ (radial) x $30 \mu \text{m}$ (axial) iCCD gate: 8 ns - 2000 laser shots

A. Mendys, et al. Spectrochim. Acta B 96, 61–68, (2014) doi:10.1016/j.sab.2014.03.009

Ħ

GREM

time = 800 ns Ne = 3.17(9) × 10²³ m⁻³ Te = 48150 (3740) K elative intensity (arb.units) 534 538 540 542 536 time = 1.2 μs Ne = 2,18(4) × 10²³ m⁻³ Te = 27 100 (1280) K 536 542 534 538 540 time = 2.5 μs Ne = 0.91(1) × 10²³ m⁻³ Te = 13 866 (410) K 534 536 538 540 542 wavelength (nm)

ablating laser: fluence 30 J/cm^2 ($6.7 \times 10^9 \text{ W/cm}^2$) probe beam: fluence 100 J/cm^2 ($16.6 \times 10^9 \text{ W/cm}^2$) Spatial resolution: $200 \mu \text{m}$ (radial) x $30 \mu \text{m}$ (axial) iCCD gate: 8 ns - 2000 laser shots

Set-up and Optical scattering

A. Mendys, et al. Spectrochim. Acta B 96, 61-68, (2014) doi:10.1016/j.sab.2014.03.009

110

Set-up and Optical scattering

ablating laser: fluence 30 J/cm^2 ($6.7 \times 10^9 \text{ W/cm}^2$) probe beam: fluence 100 J/cm^2 ($16.6 \times 10^9 \text{ W/cm}^2$) Spatial resolution: $200 \mu \text{m}$ (radial) x $30 \mu \text{m}$ (axial) iCCD gate: 8 ns - 2000 laser shots

A. Mendys, et al. Spectrochim. Acta B 96, 61-68, (2014) doi:10.1016/j.sab.2014.03.009

Ħ

Service: Raman scattering

Ref: A.Delserieys, F.Y.Khattak, S.Sahoo, G.F.Gribakin, C.L.S.Lewis, and D.Riley, Raman satellites in optical scattering from a laser-ablated Mg plume; Physical Revies A **78** (2008) 055404

Raman scattering could be used for diagnosing the relative populations of excited levels in a partially ionized plasma.

Diagnostics Plasma, RPF, Orléans, 02-12-2014

<7**~&~~~ E**SSEA

Summary and Conclusions

Laser scattered light from LIBS plasma gives a lot of information on plasma, especially on transient one.

Simultaneous measurement of plasma parameters

Scattering of laser radiation is **local method – high** spatial resolution

Direct prediction of plasma parameters without assumption of thermodynamic equilibrium

Derivation of the most important plasma parameters like N_e and T_e from TS spectra is straightforward and usually does not need further calibration

BUT Elevation of the electron temperature (heating) in Thomson scattering experiment, fortunately this effect can be corrected

→ "What can we learn about laser-induced plasmas from Thomson scattering experiments" (Review), K. Dzierzega, A.Mendys B.Pokrzywka, Spectrochimica Acta Part B 98 (2014) 76–86

Peoples

Group founder and former group lieder Prof. dr hab. Karol Musioł

Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

Krzysztof Dzierzega

M. Smoluchowski Inst. of Physics, Jagellonian University, Cracow, Poland

Bartłomiej Pokrzywka

Mt. Suhora Obs., Inst. of Physics, Pedagogical Univ. of Cracow, Poland

Stéphane Pellerin

GREMI, Université d'Orléans/CNRS, Bourges, France

Other coworkers

GREMI

ns

Agata Mendys, Tomasz Pieta, Łucasz Bratasz, M.Grabiec, S.Łabuz, W.Zawadzki Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

Ali Farah-Sougueh, Emanuelle Thouin-Leduc, Flavien Valensi GREMI, Université d'Orléans/CNRS, Bourges, France

GREMI

Katarzyna Bajan, Marta Krawczyk, Institute of Physics, Pedagogical University of Cracow, Kraków, Poland

Wiesław Olchawa, Ewa Pawelec Institute of Physics, Opole University, Opole, Poland

Thank you for your attention

Questions?

